本文,我们继续使用Matlab
内置Census
数据,通过自定义方程,实现数据的拟合。使用的Matlab
函数为fittype
。这里,自定义拟合的方程有二次和三次多项式。函数形式为:y = a(x-b)n
。通过数据拟合,我们可以大致判断出未来数据的变化情况,可以预测数据走向等。
fittype帮助文件
首先,给出fittype
函数的帮助文件如下:
>> help fittype
fittype Fittype for curve and surface fitting
A fittype encapsulates information describing a model. To create a
fit, you need data, a fittype, and (optionally) fit options and an
exclusion rule.
LIBRARY MODELS
fittype(LIBNAME) constructs a fittype for the library model
specified by LIBNAME.
Choices for LIBNAME include:
LIBNAME DESCRIPTION
'poly1' Linear polynomial curve
'poly11' Linear polynomial surface
'poly2' Quadratic polynomial curve
'linearinterp' Piecewise linear interpolation
'cubicinterp' Piecewise cubic interpolation
'smoothingspline' Smoothing spline (curve)
'lowess' Local linear regression (surface)
or any of the names of library models described in "List of Library Models
for Curve and Surface Fitting" in the documentation.
CUSTOM MODELS
fittype(EXPR) constructs a fittype from the MATLAB expression
contained in the string, cell array or anonymous function EXPR.
The fittype automatically determines input arguments by searching
EXPR for variable names (see SYMVAR). In this case, the fittype
assumes 'x' is the independent variable, 'y' is the dependent
variable, and all other variables are coefficients of the model. If
no variable exists, 'x' is used.
All coefficients must be scalars. You cannot use the following
coefficient names in the expression string EXPR: i, j, pi, inf,
nan, eps.
If EXPR is a string or anonymous function, then the toolbox uses a
nonlinear fitting algorithm to fit the model to data. To use a
linear fitting algorithm, use a cell array of terms.
ANONYMOUS FUNCTIONS
If EXPR is an anonymous function, then the order of inputs must be
correct. The input order enables the fittype class to determine
which inputs are coefficients to estimate, problem-dependent
parameters and independent variables. The order of the input
arguments to the anonymous function must be:
EXPR = @(<coefficients>, <problem parameters>, <x>, <y>) expression
There must be at least one coefficient. The problem parameters and
y are optional. The last arguments, x and y, represent the
independent variables: just x for curves, but x and y for surfaces.
If you don't want to use x and/or y as the names of the independent
variables, then you can specify different names by using the
'independent' property name/value pair. However, whatever name or
names you choose, these arguments must be the last arguments to the
anonymous function.
Anonymous functions make it easier to pass other data into the
fittype and fit functions. For example, to create a fittype using
an anonymous function and variables xs and ys from the workspace:
% Variables in workspace
xs = (0:0.1:1).';
ys = [0; 0; 0.04; 0.1; 0.2; 0.5; 0.8; 0.9; 0.96; 1; 1];
% Create fittype
ft = fittype( @(b, h, x) interp1( xs, b+h*ys, x, 'pchip' ) )
% Load some data
xdata = [0.012;0.054;0.13;0.16;0.31;0.34;0.47;0.53;0.53;...
0.57;0.78;0.79;0.93];
ydata = [0.78;0.87;1;1.1;0.96;0.88;0.56;0.5;0.5;0.5;0.63;...
0.62;0.39];
% Fit the curve to the data
f = fit( xdata, ydata, ft, 'Start', [0, 1] )
LINEAR MODELS
To use a linear fitting algorithm specify EXPR as a cell array of
terms. That is, to specify a linear model of the following form:
coeff1 * term1 + coeff2 * term2 + coeff3 * term3 + ...
(where no coefficient appears within any of term1, term2, etc) use
a cell array where each term, without coefficients, is specified in
a cell of EXPR, as follows:
EXPR = {'term1', 'term2', 'term3', ... }
For example, the model
a*x + b*sin(x) + c
is linear in 'a', 'b' and 'c'. It has three terms 'x', 'sin(x)' and
'1' (since c=c*1) and so EXPR is
EXPR = {'x','sin(x)','1'}
ADDITIONAL PROPERTIES
fittype(EXPR,PROP1,VALUE1,PROP2,VALUE2,....) uses the property
name/value pairs PROP1-VALUE1, PROP2-VALUE2 to specify property
values other than the default values.
PROPERTY DESCRIPTION
'independent' Specifies the independent variable name
'dependent' Specifies the dependent variable name
'coefficients' Specifies the coefficient names (in a cell array
if there are two or more). Note excluded names
above.
'problem' Specifies the problem-dependent (constant) names
(in a cell array if there are two or more)
'options' Specifies the default 'FITOPTIONS' for this
equation
Defaults: The independent variable is x.
The dependent variable is y.
There are no problem dependent variables.
Everything else is a coefficient name.
Multi-character symbol names may be used.
EXAMPLES
g = fittype('a*x^2+b*x+c')
g = fittype('a*x^2+b*x+c','coeff',{'a','b','c'})
g = fittype('a*time^2+b*time+c','indep','time')
g = fittype('a*time^2+b*time+c','indep','time','depen','height')
g = fittype('a*x+n*b','problem','n')
g = fittype({'cos(x)','1'}) % linear
g = fittype({'cos(x)','1'}, 'coefficients', {'a','b'}) % linear
g = fittype( @(a,b,c,x) a*x.^2+b*x+c )
g = fittype( @(a,b,c,d,x,y) a*x.^2+b*x+c*exp(-(y-d).^2), ...
'independent', {'x', 'y'}, ...
'dependent', 'z' ); % for fitting surfaces
数据写入
本示例显示如何将自定义方程拟合到人口普查数据,指定边界、系数和与问题相关的参数。
加载并绘制census.mat
中的数据:
load census
plot(cdate,pop,'o')
hold on
数据拟合
为自定义非线性模型y=a(x-b)n
创建拟合选项结构和拟合类型对象,其中a
和b
是系数,n
是problem
相关参数。有关problem
相关参数的更多详细信息,请参阅fittype
函数页面,以上帮助文档也有提到。
s = fitoptions('Method','NonlinearLeastSquares',...
'Lower',[0,0],...
'Upper',[Inf,max(cdate)],...
'Startpoint',[1 1]);
f = fittype('a*(x-b)^n','problem','n','options',s);
使用拟合选项和n=2
的值拟合数据:
[c2,gof2] = fit(cdate,pop,f,'problem',2)
得到如下结果:
c2 =
General model:
c2(x) = a*(x-b)^n
Coefficients (with 95% confidence bounds):
a = 0.006092 (0.005743, 0.006441)
b = 1789 (1784, 1793)
Problem parameters:
n = 2
gof2 =
sse: 246.1543
rsquare: 0.9980
dfe: 19
adjrsquare: 0.9979
rmse: 3.5994
使用拟合选项和n=3
的值拟合数据:
[c3,gof3] = fit(cdate,pop,f,'problem',3)
得到如下结果:
c3 =
General model:
c3(x) = a*(x-b)^n
Coefficients (with 95% confidence bounds):
a = 1.359e-05 (1.245e-05, 1.474e-05)
b = 1725 (1718, 1731)
Problem parameters:
n = 3
gof3 =
sse: 232.0058
rsquare: 0.9981
dfe: 19
adjrsquare: 0.9980
rmse: 3.4944
绘制拟合结果和数据:
plot(c2,'m')
plot(c3,'c')
legend('data','fit with n=2','fit with n=3')
原创文章,作者:古哥,转载需经过作者授权同意,并附上原文链接:https://iymark.com/articles/2770.html